
Recursion, Efficiency, and 
the Time-Space Trade Off;

Selection Sort and Big-Oh

Checkout Recursion2 project from SVN



 Always have a base case that doesn’t recurse

 Make sure recursive case always makes 
progress, by solving a smaller problem

 You gotta believe
◦ Trust in the recursive solution

◦ Just consider one step at a time





Thanks for 
David Gries for 
this technique

parameters
and local variables

method name, line number scope box

1. Draw box when method starts

2. Fill in name and first line no.

3. Write class name (for 
static method) or draw 
reference to object (for 
non-static method)

4. List every parameter 
and its argument value.

5. List every local variable declared 
in the method, but no values yet

6. Step through the method, update the line number 
and variable values, draw new frame for new calls

7. “Erase” the frame when the method is done. Q1-2



 Why does recursive Fibonacci take so long?!?

 Can we fix it?



 A deep discovery of computer science

 In a wide variety of problems we can tune the 
solution by varying the amount of storage 
space used and the amount of computation 
performed

 Studied by “Complexity Theorists”

 Used everyday by software engineers

Q3



 Two or more methods that call each other 
repeated

Q4



 Hofstadter Female and Male Sequences:

 Questions:
◦ How often are the sequences different in the first 

50 positions? first 500? first 5,000? first 5,000,000?



If you actually do this, what really 
happens is Douglas Hofstadter 
appears and talks to you for eight 
hours about strange loops.



 Starting team project Friday

 Need some input:
◦ Log on to ANGEL

◦ Go to course ANGEL page

◦ Navigate to Lessons  Project Forms  Vector 
Graphics Team Preferences

◦ Complete the short survey



Let’s see…



Shlemiel the Painter



 Be able to describe basic sorting algorithms:
◦ Selection sort

◦ Insertion sort

◦ Merge sort

◦ Quicksort

 Know the run-time efficiency of each

 Know the best and worst case inputs for each



 Basic idea:
◦ Think of the list as having a sorted part (at the 

beginning) and an unsorted part (the rest)

◦ Find the smallest number 
in the unsorted part

◦ Move it to the end of the 
sorted part (making the 
sorted part bigger and the 
unsorted part smaller)

Repeat until 
unsorted part is 
empty



 Profiling: collecting data on the run-time 
behavior of an algorithm

 How long does selection sort take on:
◦ 10,000 elements?

◦ 20,000 elements?

◦ …

◦ 80,000 elements?

Q5



 Analyzing: calculating the performance of an 
algorithm by studying how it works, typically 
mathematically

 Typically we want the relative performance as 
a function of input size

 Example: For an array of length n, how many 
times does selectionSort() call 
compareTo()?

Handy Fact

Q6-11



 In analysis of algorithms we care about 
differences between algorithms on very large 
inputs

 We say, “selection sort takes on the order of 
n2 steps”

 Big-Oh gives a formal definition for
“on the order of”



 We write f(n) = O(g(n)), and 
say “f is big-Oh of g”

 if there exists positive constants c and n0 such that

 0 ≤ f(n) ≤ c g(n)
for all n > n0

 g is a ceiling on f

Q12-15


